10,509 research outputs found

    Generating Equidistributed Meshes in 2D via Domain Decomposition

    Full text link
    In this paper we consider Schwarz domain decomposition applied to the generation of 2D spatial meshes by a local equidistribution principle. We briefly review the derivation of the local equidistribution principle and the appropriate choice of boundary conditions. We then introduce classical and optimized Schwarz domain decomposition methods to solve the resulting system of nonlinear equations. The implementation of these iterations are discussed, and we conclude with numerical examples to illustrate the performance of the approach

    Morphology and the gradient of a symmetric potential predicts gait transitions of dogs

    Get PDF
    Gaits and gait transitions play a central role in the movement of animals. Symmetry is thought to govern the structure of the nervous system, and constrain the limb motions of quadrupeds. We quantify the symmetry of dog gaits with respect to combinations of bilateral, fore-aft, and spatio-temporal symmetry groups. We tested the ability of symmetries to model motion capture data of dogs walking, trotting and transitioning between those gaits. Fully symmetric models performed comparably to asymmetric with only a 22% increase in the residual sum of squares and only one-quarter of the parameters. This required adding a spatio-temporal shift representing a lag between fore and hind limbs. Without this shift, the symmetric model residual sum of squares was 1700% larger. This shift is related to (linear regression, n = 5, p = 0.0328) dog morphology. That this symmetry is respected throughout the gaits and transitions indicates that it generalizes outside a single gait. We propose that relative phasing of limb motions can be described by an interaction potential with a symmetric structure. This approach can be extended to the study of interaction of neurodynamic and kinematic variables, providing a system-level model that couples neuronal central pattern generator networks and mechanical models

    Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules.

    Get PDF
    A detailed study of energy differences between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and water clusters is presented. Recent work questioning the applicability of Kohn-Sham density-functional theory to proteins and large water clusters (E. Rudberg, J. Phys.: Condens. Mat. 2012, 24, 072202) has demonstrated vanishing HOMO-LUMO gaps for these systems, which is generally attributed to the treatment of exchange in the functional used. The present work shows that the vanishing gap is, in fact, an electrostatic artefact of the method used to prepare the system. Practical solutions for ensuring the gap is maintained when the system size is increased are demonstrated. This work has important implications for the use of large-scale density-functional theory in biomolecular systems, particularly in the simulation of photoemission, optical absorption and electronic transport, all of which depend critically on differences between energies of molecular orbitals.Comment: 13 pages, 4 figure

    Rotorcraft contingency power study

    Get PDF
    Twin helicopter engines are often sized by the power requirement of a safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 Contingency Power rating, permitting an engine size reduction. The merits of water injection, turbine cooling airflow modulation, throttle push, and a propellant auxiliary power plant were evaluated using military Life Cycle Cost (LCC) and commercial helicopter Direct Operating Cost (DOC) merit factors in a rubber engine and a rubber aircraft scenario

    Experimental determination of the state-dependent enhancement of the electron-positron momentum density in solids

    Full text link
    The state-dependence of the enhancement of the electron-positron momentum density is investigated for some transition and simple metals (Cr, V, Ag and Al). Quantitative comparison with linearized muffin-tin orbital calculations of the corresponding quantity in the first Brillouin zone is shown to yield a measurement of the enhancement of the s, p and d states, independent of any parameterizations in terms of the electron density local to the positron. An empirical correction that can be applied to a first-principles state-dependent model is proposed that reproduces the measured state-dependence very well, yielding a general, predictive model for the enhancement of the momentum distribution of positron annihilation measurements, including those of angular correlation and coincidence Doppler broadening techniques

    Predicting solvatochromic shifts and colours of a solvated organic dye: the example of nile red

    Get PDF
    The solvatochromic shift, as well as the change in colour of the simple organic dye nile red, is studied in two polar and two non-polar solvents in the context of large-scale time-dependent density-functional theory (TDDFT) calculations treating large parts of the solvent environment from first principles. We show that an explicit solvent representation is vital to resolve absorption peak shifts between nile red in n-hexane and toluene, as well as acetone and ethanol. The origin of the failure of implicit solvent models for these solvents is identified as being due to the strong solute-solvent interactions in form of π-stacking and hydrogen bonding in the case of toluene and ethanol. We furthermore demonstrate that the failures of the computationally inexpensive Perdew-Burke-Ernzerhof (PBE) functional in describing some features of the excited state potential energy surface of the S1 state of nile red can be corrected for in a straightforward fashion, relying only on a small number of calculations making use of more sophisticated range-separated hybrid functionals. The resulting solvatochromic shifts and predicted colours are in excellent agreement with experiment, showing the computational approach outlined in this work to yield very robust predictions of optical properties of dyes in solution
    corecore